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Abstract
The present document reports the work carried on during ESGI 120 in Sofia.

The considered problem is Mathematical Model of Residential Storage Water-
heating System. We strove to model the device from Melisa Climate Ltd which
controls the water heater system in the house. We used two approaches to model
the problem that complement each other. The first one represents the dynamics
inside the heater and the second model looks at the control loop run by the device
without assuming any delay caused by first block. Although an integrated model
is not developed, the ingredients for such are presented.
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1 Introduction

The low-cost commonly available water heater is inherently a lossy device and
this means that a high percentage of the energy consumed for heating water ends
up being lost as heat to the surroundings. Informal measurements and practice
show that when a family of four people switches on and off the water heater just
when required, savings of up to 80% are recorded.

Our goal is to develop a model of the water heater to perform energy saving
calculations and help the customer to operate their water heaters in the most
energy-efficient way.

1.1 Definition of the problem (Melissa Climate)

An electric water heater consists of: an inner steel tank, that holds the water
being heated, insulation that surrounds the tank so as to decrease the amount of
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heat loss, pipe to allow cold water to enter the tank, pipe to allow hot water to
leave the tank, thermostat that reads and controls the temperature of the water
inside the tank, heating element that heats the water by means of electricity and
other components for safety and maintenance.

Water temperature inside the heater is controlled by the mechanical thermo-
stat. The temperature may usually be set by the user somewhere in between 40
and 70◦C. A microcontroller is used to gather real-time information from a water
heater.

Figure 1: Schematic view of the heater
system

The information is collected by differ-
ent sensors (Fig. 1) and consists of
data about: current temperature of
the cold water pipe, temperature of
the hot water pipe, environment tem-
perature (home temperature), electric
current and voltage. Important no-
tice the temperature sensors of the
cold and hot water pipes are installed
ONTO the pipe itself. There is signif-
icant temperature loss depending on
the pipe diameter, material and oth-
ers.

1.2 Overview

The problem was observed from two
different but complementary perspec-
tives. First, a closed-flow problem was
considered in order to understand the
dynamics inside the heater (Section 2).
The process is simplified to a 1-dimensional problem along the height of the water
tank and spacial temperature distribution is investigated. Then, in Section 3, we
analyzed the temperature dynamics during water consumption, assuming uni-
form temperature distribution inside the heater. The realistic solution would be
a combination of both models, since the time required to reach uniform temper-
ature in the second model should be estimated from the first one. Moreover, the
assumption of uniform temperature inside the tank does not appear to be im-
posing any stringent premises and the results in Section 3 seem to comply with
those provided by the company.
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2 Temperature dynamics inside the Water Heater

In this section, we develop a model of the temperature distribution inside the
water tank. Consider the case when the inflow and outflow valves are closed.
The heater is turned on at time t0. Changes in temperature impose a density
variations along the tank, which drives a water flow due to natural convection.
The density difference is proportional to the temperature difference as:

ρ− ρ0 = −β(T − T0), (1)

where β is thermal expansion coefficient, T and ρ are fluid temperature and
density, and T0 and ρ0 are reference values for them. The fluid motion is then
governed by Navier–Stokes and continuity equations for incompressible flow, and
Boussinesq approximation (see [5]) is used to take into account density differ-
ences. The temperature variation in the domain is described with a heat equation.
Therefore, the governing equations are

∂v

∂t
+ v∇ · v = − 1

ρ0
∇P + ν∇2v − gβ(T − T0), (2a)

∇ · v = 0, (2b)

∂T

∂t
+ v∇T = α∇2T, (2c)

where v is fluid velocity, P is pressure, ν is fluid viscosity and α is thermal
diffusivity. The constants used in Eq. (2) and in other equations are given in
Table 1.

Eq. (2) are too complex to attack directly. We assume that the domain is
1-dimensional with spacial dimension x along the vertical axis of the tank. x = 0
corresponds to the bottom of the tank and x = L to the top part. We assume in
Section 2.1 that the heat is supplied at x = 0. Therefore, the hot bottom plate
is heating up the cold water.

To avoid solving Navier–Stokes equations in Eq. (2) for the fluid motion inside
the water tank we use an estimation for the spatial velocity distribution of the
fluid. Since, we are looking at a closed-flow system, the velocity on top and
bottom of the heater is zero and we assume parabolic flow profile:

v(x) =
4x(L− x)

L2
vmax, (3)

where we estimated vmax =
√

2gLβ∆T by equalizing the pressure difference ∆p =
ρβ∆TgL to the dynamic head ρv2/2 in absence of viscous forces in the flow.
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Table 1: Values of the physical parameters

Constant Value

ρ 988 kg /m3

cp 4185 J /(kg .◦ C)

λ 0.59 W /(m.◦ C)

V 225 m3

I {0; 13.5}
κ 1.4269 e-07 W.m2 / J

L 1 m

Tf 500 s

V0 0.1963 m3

cm {0; 0.0211}
TA 25 ◦ C

TH 70 ◦ C

Note that this velocity choice does not satisfy the continuity equation in
Eq. (2). This is a drawback of our model, however, we reason that this ve-
locity is more realistic than simply a constant one (which satisfies the continuity
equation).

2.1 Simplified model

After imposing the velocity distribution v for the fluid motion, we are left only
with the heat equation (2c) from the original system Eq. (2). To close the prob-
lem, we need to impose initial and boundary conditions. The boundary conditions
for this case would be Dirichlet for the lower plate

T
∣∣∣
x=0

= TH. (4)

and Neumann (no heat loss) for the upper plate

∂T

∂x

∣∣∣∣∣
x=L

= 0, (5)

where TH = 70◦ C is the temperature of the hot water at the bottom. The initial
condition is chosen to agree with boundary conditions at t = 0 and has a shape
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of piecewise linear function:

T0(x) =


(TH − TA)(x− 0.1)

0.1
+ TA, 0 ≤ x < 0.1,

TA, x ≥ 0.1,
(6a)

where TA = 25◦ C is the ambient temperature, i.e. we are taking into account
the heat loss from the heater.

We used finite difference approximation for the derivatives and thus to solve
Eq. (6). A fully implicit scheme with 100 grid points in space and 5000 grid
points in time was implemented.

Fig. 2 illustrates the temperature variation for a few points inside the tank and
Fig. 3 shows all the temperature waves at all times. Depending on the location of
the heater we refer as the temperature of the heater the amount of time we need
for the water to heat up defers. In addition, the average speed of the temperature
wave is much smaller than the maximum velocity. This suggests that for an inflow
of water to heat up, there is a delay time one has to take into consideration. The
delay temperature depends on the temperature of the inflow water.

Figure 2: Temperature distribution for vmax = 0.003 [m/s]
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Figure 3: Temperature profile evolution of the heater

3 Water Heater Control System

Here we assume the water heater is uniform at all times. We also suppose there
is no delay in water heater system. The more realistic model shall be constructed
by relaxing the later assumption. The general control block of the control system
looks in figure 4.

Figure 4: General control loop scheme for water heater system
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Here we don’t take cold water variations into account therefore Tc(t) ≡ Tc. Also
we consider the case which the desired temperature is set to a constant value
Tset(t) ≡ Th. The dynamics of the thermostat and the heater power, P (t), can
be described as a function of temperature and time:

P (t, Th) =

{
V I, Tset − Th > ε,
0, otherwise,

(7)

i.e. we assume either the heater works with full power or it is off.
For the flow of cold water we assume that it is a piecewise constant function,

that is, the tap is either full open or full closed and also the consumption (flow)
is the same whenever the tap is open. Therefore, the flow function could be
described as

F (t) =
∑
i

fiχ(t; ti, ti+1), (8)

where

χ(t; ti, ti+1) =

{
1 t ∈ [ti, ti+1]

0 otherwise
, (9)

and fi = riF with ri = {1, 0} and F = 2 liter/min.
Thus the overall heat balance around the system reads (similarly to [1]-[4])

dE(t)

dt
=
Mcpd(Th(t)− Tc)

dt
= P (t) + F (t)cp(Th(t)− Tc) +

(Th(t)− Ta)A

R
, (10)

with E(t) being the internal energy, Ta room temperature, td time delay due to
the heating of the water and R thermal resistance of the tank.

To approach this problem, we chunk the time domain into finite small intervals.
The quality of the solution clearly depends on resolution of the mesh. Due to
Eqs. (7) to (9), since at each time interval the coefficients in Eq. (10) are constant,
Eq. (10) turns into

dy(t)

dt
+ aiy(t) = bi, ti ≤ t < ti+1 (11)

which has analytical solution in the form

y(t) = ξie
−ait +

bi
ai
, ti ≤ t < ti+1, (12)

where ξi depends on the solution at ti from the previous time step (i.e, ti ≤ t <
ti+1).
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Figure 5: A sample usage of water in a day

As an example we assumed a consumption schedule for a person in a day time
as in Fig. 5. We took the sensitivity of the thermostat to be 3◦C. Fig. 6 illustrates
the history of the electric power and the temperature profile for the outlet flow
from t = 30min onwards.

Finally, we need to take into account for the heat loss from the pipes that
occurs between the heater and the sensors. According to problem description,
the temperature that is measured by the sensor is on the pipe. Therefore, there
is a convection heat transfer from the fluid inside the pipe to the inner wall of the
pipe which is followed by a conduction heat transfer from there to the outside
surface of the pipe. Finally, the outer surface is cooled down by Newton cooling
law through the cold surrounding air. The heat balance for the two processes are
expressed as

hwaterAinner(Twater − T1) =
k

d
(T1 − T2), (13)

hairAouter(T2 − Tair) =
k

d
(T1 − T2), (14)

where d is the thickness of the tube and T1 and T2 are the temperatures of
the inner and outer surface of the pipe, respectively. Using the proper param-
eters for hwater and hair and properties of typical pipes used in houses (e.g.
thickness=2mm, diameter=1inch) we found a decrease of maximum 3◦C. An im-
proved model would be to plug Eqs. (13) and (14) into Eq. (10) so that the heat
loss plays its role in the dynamics of the tank.

4 Conclusions

During the week of ESGI 120 we developed and solved the model for temperature
dynamics the residential electrical water heater. Two proposed approaches were
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Figure 6: Hot water usage, power and temperature history for toy problem from
Fig. 5
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covered. First, we constructed a 1-D spacial model of the temperature distribu-
tion inside the water tank with the heater located at the bottom of it. The 1-D
approximation allowed us to avoid heavy numerical simulations, however, it has
couple of limitations such as the location of the heater is strictly at the bottom of
the tank and imposed fluid velocity that does not satisfy the continuity equation.
The later limitation can be withdrawn if one constructs 2-D model. The results
and parameter estimation suggest domination of the convective effect with re-
spect to diffusion, and therefore, suitable choice of the velocity profile is crucial
for the model.

The second proposed model described the temperature dynamics in the tank.
This model fits better to describe the experimental data, however, also has its
limitations, such as an assumption of uniform temperature inside the tank which
results into neglecting the time which is required for the water on the top of the
tank to heat up.

Both models can be integrated into a single complete model, and it is the
proposed step for the further research.
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