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Geotechnical Finite Element Simulations 
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Excavation pit with grouting in the area of a bridge 

 grouting 

Volume 

Elements 

Beam Elements 

(based on Mindlin’s 

theory of plates.) 

“2D” Plain-

Strain Model 

Objectives: 

1. Prediction of Deformation 

2. Is the structure near to a failure state? 



How to define Failure for FE Simulations? 

• Lack of numerical convergence?  Not good! (see below) 

• Simulated deformation exceeds a given threshold?   

• Hill‘s Criterion based on Second Order Work? 
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Hill‘s Criterion: Second Order Work (1) 

Well-known criterion for failure (bifurcation in the 

solution) for models using elasto-plastic formulation: 

Hill’s failure criterion based on the second order work  

Second order work at one material point: 

𝑢 = 𝑑2𝑊 = 𝑑𝜎: 𝑑𝜀  

 

Hill’s condition of stability (Hill 1958): 

𝑑2𝑊 > 0 
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Second Order Work for Plaxis-Beams? 

• Plaxis: Second Order Work not given 

• Worse, only a small set of output variables at the beam element nodes 

are provided: 

• ux: total nodal displacements in direction x 

• uy: total nodal displacements in direction y 

• ϕ: total nodal rotation  

• N: Normal force extrapolated to the node 

• G: Shear force extrapolated to the node 

• M: Bending moment extrapolated to the node 

• Objective: Calculate the second order work for this kind of beam 

elements as a post-processing after finishing the FE-simulation based 

only on the nodal variables provided in the programs output 
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Expected Results 

• Show a way to calculate the strain energy of one beam 

element 

 

• Show a way to calculate the second order work for this 

kind of beam element with the data given 
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Timoshenko beam model 
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𝑢 𝑥, 𝑧, 𝑡 = 𝑢0 𝑥, 𝑡 + 𝑧 𝜙𝑦 𝑥, 𝑡  

𝑤 𝑥, 𝑧, 𝑡 = 𝑤0 𝑥, 𝑡  

Displacement fields: longitudinal u(x,z,t) and transverse w(x,z,t),  

based on Timoshenko’s beam theory are expressed  

by the displacements on the middle line and the rotation of the cross section: 

𝑢0, 𝑤0 are the displacements on the middle line (y = z = 0). 

𝜙𝑦 is the rotation of the cross section 



Timoshenko beam model 
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𝜀𝑥 =
𝜕𝑢

𝜕𝑥
=
𝜕𝑢0
𝜕𝑥

+ 𝑧
𝜕𝜙𝑦

𝜕𝑥
 

𝛾𝑥𝑧 =
𝜕𝑤

𝜕𝑥
+
𝜕𝑢

𝜕𝑧
=
𝜕𝑤0
𝜕𝑥

+ 𝜙𝑦 

• Linear strain-displacement relations are assumed: 

e 

s 

linear 

elasticity 

plasticity 

𝝈 =
𝜎𝑥
𝜏𝑥𝑧

=
𝐸 0
0 𝜆𝐺

𝜀𝑥
𝛾𝑥𝑧

= 𝑫 𝜺 

• Hooke’s law is used to express the linear stress-strain relations 

𝜀𝑥   is the direct strain 

𝛾𝑥𝑧 is the shear strain 

𝜎𝑥 is direct stress in x direction, 

𝜏𝑥𝑧 is shear stress 

𝐸 is Young modulus, 

𝐺 is shear modulus,  

𝜆 is shear correction factor. 



Timoshenko beam model 
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The strain energy has the following form: 

𝑈 =
1

2
 𝜺T𝝈𝑑𝑉

𝑉

=
1

2
 𝜀𝑥𝜎𝑥 + 𝛾𝑥𝑧𝜏𝑥𝑧 𝑑𝑉

𝑉

 

𝑈 =
1

2
𝐸𝐴 

𝜕𝑢0
𝜕𝑥

2

𝑑𝐿

𝐿

+
1

2
𝐸𝐼𝑦 

𝜕𝜙𝑦

𝜕𝑥

2

𝑑𝐿

𝐿

+
1

2
𝜆𝐺𝐴 

𝜕𝑤0
𝜕𝑥

2

+ 2
𝜕𝑤0
𝜕𝑥

𝜙𝑦 + 𝜙𝑦
2 𝑑𝐿

𝐿

 

Considering Timoshenko’s beam theory and linear elastic materials,  

the strain energy has the following form: 

𝐴 is cross sectional area,  

𝐼𝑦 is second moment of area, 

𝐿 is length of the beam. 



Timoshenko beam model 
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𝑁1 𝜉  𝑁2 𝜉  

𝑁3 𝜉  

ux: displacements in direction x 

uz: displacements in direction z 

ϕ: rotation  

N: Normal force 

G: Shear force 

M: Bending moment 

The software Plaxis provides  

the following information  

at each node:: 

Finite element discretization of the beam. 

nodes 

element 

Quadratic shape functions are used for each element 



Timoshenko beam model 
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We approximate the functions 𝑢0,  𝑤0, 𝜙𝑦 by using quadratic finite 

elements. The finite element, given by nodes 𝑥1, 𝑥2, 𝑥3 is transformed 

into the standard element −1; 1  by the transformations 

  

𝑥 =
𝑙

2
𝜉 +

𝑥1+𝑥3

2
 ,   𝑑𝑥 =

𝑙

2
𝑑𝜉,   𝑙 = 𝑥3 − 𝑥1 

𝜉 =
2𝑥

𝑙
−

𝑥1+𝑥3

𝑙
,    𝑑𝜉 =

2

𝑙
𝑑𝑥 

 

The shape functions 𝑁1, 𝑁2, 𝑁3 for the standard element are:  

 𝑁1 = −
1

2
1 − 𝜉 𝜉,    𝑁2 = 1 + 𝜉 1 − 𝜉 ,    𝑁3 =

1

2
1 + 𝜉 𝜉 

  

 

𝜉 is the local coordinate 

x is the global coordinate 



Timoshenko beam model 
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Let 𝑢0
1, 𝑢0

2, 𝑢0
3 are the values of 𝑢0 at the nodes of the finite element. 

Then, the displacements and the rotation can be expressed by the 

nodal values and the shape functions:  

 

 

 

𝑢0
1 𝑢0

2 𝑢0
3 

𝜕𝑢0
𝜕𝜉

= 𝑢0
1
𝜕𝑁1
𝜕𝜉

+ 𝑢0
2
𝜕𝑁2
𝜕𝜉

+ 𝑢0
3
𝜕𝑁3
𝜕𝜉

 𝑢0(𝜉) = 𝑢0
1𝑁1 + 𝑢0

2𝑁2 + 𝑢0
3𝑁3 

𝑤0(𝜉) = 𝑤0
1𝑁1 +𝑤0

2𝑁2 +𝑤0
3𝑁3 

𝜙𝑦(𝜉) = 𝜙𝑦
1𝑁1 + 𝜙𝑦

2𝑁2 + 𝜙𝑦
3𝑁3 

𝑤0
1 𝑤0

2 𝑤0
3 

𝜙𝑦
1 𝜙𝑦

2 𝜙𝑦
3 nodal values  



Timoshenko beam model 
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For computation of the integrals for the energy U on every 

element we use the 3-point Gaussian quadrature formulas. 

  f ( ξ )dξ 
1

−1
= c1f ξ1 + c2f ξ2 + c3f(ξ3 )  

with nodes ξ𝑖 = − 0.6, 0, + 0.6  and coefficients  

c𝑖 = 5/9, 8/9 and 5/9.  

 



Timoshenko beam model 
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𝑈 =
1

2
𝐸𝐴 

𝜕𝑢0
𝜕𝑥

2

𝑑𝐿

𝐿

+
1

2
𝐸𝐼𝑦 

𝜕𝜙𝑦

𝜕𝑥

2

𝑑𝐿

𝐿

+
1

2
𝜆𝐺𝐴 

𝜕𝑤0
𝜕𝑥

2

+ 2
𝜕𝑤0
𝜕𝑥

𝜙𝑦 + 𝜙𝑦
2 𝑑𝐿

𝐿

 

The strain energy, written in global coordinate system,  

has the following form: 

𝑈 =
1

2
  𝐸𝐴  

𝜕𝑢0
𝜕𝜉

2
2

𝑙
𝑑𝜉

1

−1

+ 𝐸𝐼𝑦  
𝜕𝜙𝑦

𝜕𝜉

2
2

𝑙
𝑑𝜉

1

−1

+ 𝜆𝐺𝐴  
𝜕𝑤0
𝜕𝜉

2
2

𝑙
𝑑𝜉

1

−1𝑒

+ 2𝜆𝐺𝐴  
𝜕𝑤0
𝜕𝜉

𝜙𝑦𝑑𝜉

1

−1

+ 𝜆𝐺𝐴  𝜙𝑦
2 𝑙

2
𝑑𝜉

1

−1

  

The strain energy is obtained by the sum of the strain energies  

of each element in the local coordinate system: 



Expected Results 
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• Show a way to calculate the strain energy of one beam 

element 

 

• Show a way to calculate the second order work for this 

kind of beam element with the data given 



Second order work 
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𝜀𝑥 =
𝜕𝑢

𝜕𝑥
=
𝜕𝑢0
𝜕𝑥

+ 𝑧
𝜕𝜙𝑦

𝜕𝑥
 

𝛾𝑥𝑧 =
𝜕𝑤

𝜕𝑥
+
𝜕𝑢

𝜕𝑧
=
𝜕𝑤0
𝜕𝑥

+ 𝜙𝑦 

1. The strains in each node,  

can be computed from: 

2. By knowing the elastic-plastic stress-strain relations,  

the stresses 𝜎𝑥 and 𝜏𝑥𝑧 can be determined. 

3. If the stresses and the strains are known,  

the second order work is given by: 

𝑢 = 𝑑2𝑊 = 𝑑𝜎: 𝑑𝜀 

The second order work can be obtained by  

• computing the strains,  

• checking if the beam is in elastic or plastic regime,  

• obtaining the stresses and  

• computing the second order work by the computed strains and stresses: 

elastic-plastic stress-strain relations 



Thank you for your attention! 


