
Authenticity Management Algorithm for

Digital Images

Todor Balabanov, Peter Dojnow, Vasil Kolev, Nikolai Manev, Walter
Mudzimbabwe, Petar Tomov, Ilian Zankinski, Stela Zhelezova

Abstract
Nowadays network services are gaining great attention. Therefore authentica-

tion of media content is very important. For the considered problem, the group
propose an algorithm with client-server architecture. The chosen digital signature
algorithm is based on image content and is according to NIST specifications. The
most important parameters for an effective tampering detection are discussed.

Key words: authentication, watermarking, tampering detection

1. Introduction
Image authentication is of great importance due to the large number of mul-

timedia applications in various fields. Currently, the amount of digital images
transmitted over non-secure channels is growing rapidly. Therefore, the protec-
tion of image integrity is of great interest.

A digital watermark is called robust if it resists a designated class of trans-
formations and it is imperceptible if the watermarked content is perceptually
equivalent to the original one.

There are active and passive image authentication methods. The active meth-
ods extract some information of the image to be authenticated while the passive
ones perform the authentication without needing previous information about the
authenticated image. Active methods include watermarking and hashing based
methods. We extract the needed authentication and tampering detection in-
formation from the original picture so we use active methods for the proposed
algorithm.

With respect to the embedding method there are different watermarking tech-
niques. Some of them embed message in spatial domain. Other methods use
message embedding in a frequency-based representation of a digital image. The
proposed authentication schema uses spatial domain.

Because of the particular case in which the watermarking is considered, we
employ steganographic technique to embed data. Least Significant Bit (LSB)
hiding is one of today’s easiest techniques for image steganography. It imply



ESGI’120

adding some secret information in the least significant bits of the image pixel. The
image quality is distorted for the number of bits embedded in a pixel greater than
3. However, such a technique is very insecure because the watermark can be easily
destroyed. But for our problem, the most desirable property is imperceptibility
to human senses than robustness therefore it is appropriate. The creation of
robust and in the same time imperceptible watermarks has proven to be quite
challenging [3].

In the case of mobile devices the signature scheme must be efficient enough
without delays. We choose to develop a simple image authentication scheme.

1.1. Definition of the problem
There is an image taken in an Android application. The application have

to sign digitally the image without the user’s knowledge in order to verify its
origin. Apart from this, a digital watermark has to be added such that in case
of tampering the modified part of the image is indicated. The application sends
the image to the server where a corresponding algorithm part verifies the origin
and the integrity of the image.

1.2. Historical Review
A Vector Quantization (VQ) based digital image watermarking scheme is pro-

posed in [4]. The codewords in the VQ codebook are classified into different
groups according to different characteristics and then each binary watermark bit
is embedded into the selected VQ encoded block. This technique cannot resist
geometrical distortion.

There are algorithms based on the discrete Radon transform [5]. The Global
Hash estimation of the image is used to establish if the image under analysis was
tampered and if this is the case, the local Hash estimation is used for obtaining the
exact tampered regions. This algorithm is not suitable for our problem because of
the requirement of sending the original Hash values apart from the watermarked
image.

Some steganographics techniques also are suitable for hiding an information in
image. A steganographic scheme is applied if the user has a secret message that
is to be hidden in the image. The authors [7] use a hash function to find out the
locations to store the secret message which is encrypted using AES encryption.
In the problem that we consider, the secret message has to be the private key of
the application. This scheme cannot work if the picture is tampered.

1.3. The Algorithm Requirements
The performance of the proposed algorithm have to meet the following main

properties:

2



ESGI’120

• Robustness: It may not be possible without knowledge of the procedure and
the secret key to manipulate the watermark. Robustness also means the re-
sistance ability of the watermark information to changes and modifications
made to the original file.

• Nonperceptibility: It is important to recognize whether the brought bit
sample of the watermark produces perceptible changes optically. A perfect
nonperceptible bit sample is present if data material marked with water-
mark and the original cannot be distinguished from each other.

• Blind: The detection of digital watermark has to be done without the
original data, so in order to detect watermark information, blind techniques
have to be used.

• Effectiveness: Tampering detection and localization of the changes made to
a watermarked image.

2. Our Approach

1.1. Initial statements
The entire algorithm consists of two main steps:

• client part in which the embedding is done;

• server part where the verification and extracting is done.

The initial restrictions are:

• Size of the original image n×m pixels in Bitmap. Minimal size: 1024×768.
This is the worst case, because the hidden bits place is proportional to the
image size.

• Content: interior and car pictures. The content is important in the con-
nection with the hiding bits methods. If the image content is almost the
same, i.e. the colors are evenly distributed hiding of information is much
more difficult.

• The value of perceptual transparency is measured with Signal-to-noise ratio
(SNR). SNR is used in science and engineering to compare the level of a
desired signal to the level of background noise. It is defined as the ratio of
signal power to the noise power:

3



ESGI’120

SNR = 10.log(MAX2/MSE)

MAX - the expected pixel values,
MSE - the standard deviation of the pixel values between the original
image (OI) and the watermarked image (WI) bits.

MSE =
1

m.n

∑
i

∑
j

(Oi,j −Wi,j)
2,

where i ∈ {1, ..., n}; j ∈ {1, ...,m} are the dimensions of the original picture.

For the considered problem it is required SNR > 30.
The most common way to model color images in Computer Graphics is the

RGB color model - each pixel is represented by tree values, the amount of red,
green and blue. We can use a packed ordering - the tree color components are
placed together in a single array element. Each color pixel is presented by a
32-bit value according to Fig.3. Eight bits are used to represent each of the RGB
components and 8 bits are reserved for the transparency (α) component. The
main input element in our algorithm is the original image (OI). It is an n ×m
matrix C, ci = (Ri, Gi, Bi). Each element of the matrix is 0 ≤ Ri, Gi, Bi ≤ Cmax,
for the most digital images Cmax = 255. Because there are three color channels,
it’s possible to store three hidden bits of information in each pixel. But our
proposition is to use only one of the color channels because the application does
not need more capacity.

Figure 1: The bits of a color pixel

In order to be able to create a digital signature, we need a private key. For
the considered problem, the user must not be involved in the signing procedure.
The algorithm aim is to verify that the image is taken with certain device. Its
corresponding public key is needed in order to verify the authenticity of the
signature. The key pair (private and corresponding public key) generation is done
in two parts. The choice of algorithm parameters and the key pair generation for
particular image and user. The algorithm parameters are: q - N -bit prime, p -

4



ESGI’120

L-bit prime, p − 1 is a multiple of q, g - its multiplicative order modulo p is q.
The NIST recommend in Federal Information Processing Standard (FIPS) 186-3
key length pairs (2048, 256), and (3072, 256) for (L, N) - the associated pair of
length parameters for a DSA. The algorithm parameters can be used as they are
implemented in library according to some provider (as SUN) for instance. Also
the DSAParameterSpec class can be used to chose specific (p,q,g) parameters.

A particular key pair is generated by KeyPairGenerator class. At this step
the String algorithm (we choose DSA) have to be specified. To initialize two
arguments are needed: the key length Lk and the source of randomness. For
the second parameter the threadedSeedGenerator have to be used several times
with different parameters, each of them connected with the particular user, device
and time parameters.

So the next input element the algorithm needed is the private key k with
length Lk = 2048 bits, k - random, 0 < k < q and the public key y = gk mod p.

1.2. The client part

Run-up the image

From considered OI matrix C,k it is needed to obtain a matrix with zeroes
ZBI in each bit which we will use later for hiding information. We chose LSB
and 3-LSB hiding strategy to achieve the highest possible robustness without
degrading image quality.

Next from ZBI the sequence is obtained. The order in which pixels are taken
is important due to the avalanche effect in hash functions. This can be done in
connection with private key. On the server there can be stored different PATH

schemes for each key pair. A scheme is actually a permutation of n.m variables.
All permutation are considered in lexicographical order and each has its consec-
utive number therefore in variable PATH the corresponding permutation number
is saved. So the function MakeSequence takes as input ZBI and PATH and returns
the ”zerobits” image sequence ZBIs.

Signing

Message digests are secure one-way hash functions that take arbitrary-sized
data and output a fixed-length hash value. The standard Message Digest algo-
rithms are for example MD5, SHA-1, SHA-256 etc. Bear in mind that the first
two are compromised [3], [8] for the implementation of the proposed algorithm we
suggest SHA3-256, SHA3 is the newest one but it has BITE-only implementation
in Java so the length of input sequence has to be divisible by 8. It takes as input
ZBIs and gives as output |MD| = 256 bits. A common way to sign things is the

5



ESGI’120

Figure 2: The algorithm client part

Digital Signature Algorithm. The signing is done in Signature object from the
Signature class with the following steps:

• Get a Signature object - the signature algorithm name is specified and the
the name of the message digest algorithm used by the signature algorithm
is specified. SHA3-256withDSA is a way of specifying the DSA signature
algorithm, using the SHA3-256 message digest algorithm (Spongy Castle
Crypto package).

• Initialize the Signature object - the private key is used.

• Supply the Signature object the ZBIs to be signed - the update method of
the Signature object is called.

• Generate the digital signature sequence DS = (r‖s) applying sign method,
where r = (gki mod p) mod q and s = k−1

i (SHA3-256(ZBIs) + k.r) mod q,
ki - a random per-image value and LDS is about 2×160 bits but it depends
on Hash function and converting of integers r and s into strings.

Now the DS and public key are ready to be sent to the server. Usually they
are stored in additional files and sent separately. The proposed algorithm embed
DC in the ZBIs. We store DS not in each 3-LSB but in each (n.m) mod LDS

3-LSB according to PATH permutation. The public key is added at the end of
SWIs.

6



ESGI’120

Watermarking for tampering detection

For the algorithm purpose, the non visible watermark have to be hidden even-
tually in the ZBIs. We use wide spread blocking technique. The algorithm apply
CRC16 on each different block. The Crc16 class of Java has to be used. It gives
as output 16 bits codeword for each input string. There are different standard
CRC polynomial on these parameters included in the library but for each string
length we can choose the best one with respect to value of undetected error prob-
ability [1]. We have to hide 16 bits in LSB of one color channel so the input string
length ILCRC16 has to be divisible by 32 and at least 32.16 = 512 bits, i.e. 16
pixels. In this case, each LSB of the chosen color is used. The greater ILCRC16

the rougher the tamper detection.

As a result, ZBIs become SWIs - the image bits sequence with encoded public
key (X.509 standard) concatenated at its end, DS bits as 3-LSB and CRC16
output bits as LSB. Only the signed and watermarked image sequence SWIs is
sent to the server part of the proposed algorithm.

1.3. The server part

Run-up

The encoded public key is extracted from the end of the obtained SWIs. Next
the DSV from the used 3-LSB and the CRC16V words from LSB are extracted,
SWIs the ZBIs remain. It is needed in this manner because exactly ZBIs is used
to produce signature in the client part of the algorithm.

Verifying a Digital Signature

A KeyFactory object in KeyFactory class have to be used in order to get
DSA public key from its encoding. A signature is verified by an instance of the
Signature class. For the Signature object the same algorithm (DSA) and the
same message digest algorithm (SHA3-256) are specified. But now the initializa-
tion is with the public key. Then the update method of Signature object supplies
ZBIs. At the end, verify method is applied on the extracted digital signature
DSV and the calculated one in the (r‖s) form. This method returns ”true” only
if DSV is the actual signature of the supplied data ZBIs generated by the pri-
vate key ki corresponding to the read public key. It calculates ω = s−1 mod q,
u1 = SHA3−256(ZBIs).ω mod q, u2 = r.ω mod q and υ = (gu1yu2 mod p) mod q.
So the signature is valid for υ = r. If the returned value is ”true” we can go
on with CRC checking else it is clear the image is not taken with the given
application.

7



ESGI’120

Figure 3: The algorithm server part

Tampering detection At this step the algorithm compare the extracted
CRC16V values and CRC16 words obtained from the received ZBIs. If the
image is not tampered it returns ”true”. Then applying on ZBIs the inverse per-
mutation PATH−1, ZBI is obtained. It is not the original image, but perceptually
indistinguishable.

In the other case, the pixels with wrong CRC16 values have to be considered
as tampered and a new two color image (the same size as OI) can be done - with
black color only at tampered pixels.

Conclusions

We propose a signing and watermarking schema suitable for the features of a
particular business problem. The parameters and tools are chosen according to
the newest scientific achievements. The experiments with real data are needed in
order to evaluate the lowest possible SNR for different parameters and to ensure
the best performance of the algorithm. The real media environment have to be
considered to supply the algorithm with error protection during the transmission.

8



ESGI’120

Acknowledgements.

References

[1] Baicheva, T., Dodunekov, S., Kazakov, P., Undetected error probability per-
formance of cyclic redundancy-check codes of 16-bit redundancy, IEE Proc
Commun., 147 (5) 2000, 253 - 256.

[2] CERT Vulnerability Note VU# 836068, Kb.cert.org., December 31, 2008.

[3] Cox, I.J., Miller, M.L., Bloom, J.A., Fridrich J., Kalker, T.: Digital wa-
termarking and steganography. Morgan Kaufmann, Burlington, MA, USA,
2008

[4] Hsien-Chu Wu, Chin-Chen Chang, A novel digital image watermarking
scheme based on the vector quantization technique, Computers and Security,
24, (2005) 460-471.

[5] Liu, Z., Li, Q., Zhang, H., Peng, X., An Image Structure Information based
Robust Hash for Tamper Detection and Localization, Sixth International
Conference on Intelligent Information Hiding and Multimedia Signal Pro-
cessing. Darmstadt, Germany, 430-433.

[6] http://csrc.nist.gov/publications/PubsFIPS.html

[7] Rinu Tresa M. J., Athira M. B., Sobha T., A novel steganographic scheme
based on hash function coupled with AES Encryption, Advanced Computing:
An International Journal, 5 (1) (2014)

[8] Schneier,B., Schneier on Security: Cryptanalysis of SHA-1, February 18,
2005.

9


